On Mixed Metric Dimension of Some Path Related Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

On the metric dimension of some families of graphs

The concept of (minimum) resolving set has proved to be useful and/or related to a variety of fields such as Chemistry [3,6], Robotic Navigation [5,8] and Combinatorial Search and Optimization [7]. This work is devoted to evaluating the so-called metric dimension of a finite connected graph, i.e., the minimum cardinality of a resolving set, for a number of graph families, as long as to study it...

متن کامل

On Cycle Related Graphs with Constant Metric Dimension

If is a connected graph, the distance between two vertices G  , d u v   , u v V G  G is the length of a shortest path between them. Let be an ordered set of vertices of and let v be a vertex of . The representation  1 2 = , , , k W w w w   G   r v W of v with respect to is the -tuple W k         1 2 , , d v w  , , , k d v w d v w , . If distinct vertices of have distinct repr...

متن کامل

the metric dimension and girth of graphs

a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...

متن کامل

On the metric dimension of Grassmann graphs

The metric dimension of a graph Γ is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. We consider the Grassmann graph Gq(n,k) (whose vertices are the k-subspaces of Fq, and are adjacent if they intersect in a (k− 1)-subspace) for k ≥ 2. We find an upper bound on its metric dimension, which is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3030713