On Mixed Metric Dimension of Some Path Related Graphs
نویسندگان
چکیده
منابع مشابه
The metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملOn the metric dimension of some families of graphs
The concept of (minimum) resolving set has proved to be useful and/or related to a variety of fields such as Chemistry [3,6], Robotic Navigation [5,8] and Combinatorial Search and Optimization [7]. This work is devoted to evaluating the so-called metric dimension of a finite connected graph, i.e., the minimum cardinality of a resolving set, for a number of graph families, as long as to study it...
متن کاملOn Cycle Related Graphs with Constant Metric Dimension
If is a connected graph, the distance between two vertices G , d u v , u v V G G is the length of a shortest path between them. Let be an ordered set of vertices of and let v be a vertex of . The representation 1 2 = , , , k W w w w G r v W of v with respect to is the -tuple W k 1 2 , , d v w , , , k d v w d v w , . If distinct vertices of have distinct repr...
متن کاملthe metric dimension and girth of graphs
a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...
متن کاملOn the metric dimension of Grassmann graphs
The metric dimension of a graph Γ is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. We consider the Grassmann graph Gq(n,k) (whose vertices are the k-subspaces of Fq, and are adjacent if they intersect in a (k− 1)-subspace) for k ≥ 2. We find an upper bound on its metric dimension, which is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3030713